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Complexity

In computer science, it’s useful to classify problems according to the
computational resources required for their solution.

The complexity of a problem is, roughly speaking, the minimum
number of operations required to solve the problem.

Nielsen has developed an approach to evaluate quantum complexity
based on the continuous evolution of quantum states.
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Nielsen’s Approach

We define an unitary operator to represent a circuit which performs
the transformation from reference to target:

Û |ϕr⟩ = |ϕt⟩

It’s analogous to a time evolution operator:

Û(τ) =
←−
P exp

∫ τ

0
dτ̃ Ĥ(τ̃) ; Û(1) ≡ Û

The Hamiltonian can be expanded in terms of a basis of “elementary
generators" Ô, with coefficients Y called “control functions":

Ĥ(τ) =
∑

I

YI(τ)ÔI
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We define the “cost" of a circuit in terms of a “cost function" F :

Cost =
∫ 1

0
dτF(Û(τ), ˙̂U(τ))

The complexity of a target state is the cost of the most efficient
circuit that generates it from the reference state.

Finding the complexity means minimizing the cost integral.

The complexity:

▶ Is relative to the reference state
▶ Depends on the choice of F
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There are desirable restrictions which can be imposed on F in a way
that it ends up describing the metric of a Finsler manifold. The
problem of minimizing the cost then becomes a problem of finding
geodesics.

Still, one can pick between various possibilities, such as:

F1(τ) =
∑

I

|YI(τ)|

F2(τ) =

√∑
I

Y2
I (τ)

With F2, the problem of minimizing the cost becomes the problem of
finding a geodesic in a Riemann manifold.
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Scalar QFT as Harmonic Oscillators

Classical Lagrangian:

L =
∫

d4x
1
2

[
∂µϕ∂

µϕ− m2ϕ
]

Hamiltonian after quantization (mostly minus metric):

Ĥ =

∫
d3x

1
2

[
Π̂2 + (∇ϕ̂)2 + m2ϕ̂

]
We can discretize by separating points by a distance δ:

Ĥ =
∞∑

n1,n2,n3
=−∞

δ3 1
2

[
Π̂2(⃗n) + m2ϕ̂2(⃗n) + δ−2

3∑
i=1

(ϕ̂(⃗n + e⃗iδ)− ϕ̂(⃗n))2

]
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By making the following definitions:

x̂(⃗n) = δ2ϕ̂(⃗n) ; p̂(⃗n) = δΠ̂(⃗n)

m = ω ; Ω = δ−1 ; M = δ−1

We obtain the following Hamiltonian:

Ĥ =
∞∑

n1,n2,n3
=−∞

1
2

[
1
M

p̂2(⃗n) + Mω2x̂2(⃗n) + MΩ2
3∑

i=1

(x̂(⃗n + e⃗iδ)− x̂(⃗n))2

]

Infinite coupled harmonic oscillators in each direction!!
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Complexity for a Pair of Coupled Oscillators

Let’s start with a pair of oscillators. The Hamiltonian is:

Ĥ =
1
2

[
p̂2

1 + p̂2
2 + ω2(x̂2

1 + x̂2
2) + Ω2(x̂1 − x̂2)

2 ]
Defining normal modes:

ˆ̃x± =
1√
2
(x̂1 ± x̂2) ; ˆ̃p± =

1√
2
(p̂1 ± p̂2)

ω̃2
+ = ω2 ; ω̃2

− = ω2 + 2Ω2

We obtain:

Ĥ =
1
2

[
ˆ̃p2
+ + ˆ̃p2

− + ω̃2
+
ˆ̃x2
+ + ω̃2

−
ˆ̃x2
−

]
Decoupled oscillators!!
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The ground ground state is our target:

ϕt(x̃+, x̃−) =
(ω̃+ω̃−)

1/4
√
π

exp

[
−1

2
(ω̃2

+x̃2
+ + ω̃2

−x̃2
−)

]
We pick an arbitrary reference state:

ϕr(x1, x2) =

√
µ

π
exp
[
−µ

2
(x2

1 + x2
2)
]

ϕr(x̃+, x̃−) =

√
µ

π
exp
[
−µ

2
(x̃2

+ + x̃2
−)
]
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We can define elementary gates using position and momentum as
generators:

T̂a(ϵ) ≡ exp iϵp̂a −→ Shift ⟨x̂a⟩ by ϵ

K̂a(ϵ) ≡ exp iϵx̂a −→ Shift ⟨p̂a⟩ by ϵ

Q̂ab(ϵ) ≡ exp iϵx̂ap̂b −→ Shift ⟨x̂b⟩ by ϵ⟨x̂a⟩ ; a ̸= b

Q̂a(ϵ) ≡ exp iϵ(x̂ap̂a + p̂ax̂a) −→ Scale ⟨x̂a⟩ by exp(2ϵ)

The same can be done for the normal modes:

ˆ̃Q±(ϵ) ≡ exp iϵ(ˆ̃x±ˆ̃p± + ˆ̃p±ˆ̃x±) −→ Scale ⟨ˆ̃x±⟩ by exp(2ϵ)
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To go from reference:

ϕr(x̃+, x̃−) =

√
µ

π
exp
[
−µ

2
(x̃2

+ + x̃2
−)
]

To target:

ϕt(x̃+, x̃−) =
(ω̃+ω̃−)

1/4
√
π

exp

[
−1

2
(ω̃2

+x̃2
+ + ω̃2

−x̃2
−)

]
We only need the scaling operator ˆ̃Q±:

|ϕr⟩
ˆ̃Q+(ϵ+)

ˆ̃Q−(ϵ−)−−−−−−−−−→ |ϕt⟩

ϵ± =
1
2
ln

(
ω̃±
µ

)
It has been proved that this is the most efficient circuit for F1 and F2!
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To obtain the complexity, we go back to the definitions:

Û(1) =
←−
P exp

∫ 1

0
dτ̃ Ĥ(τ̃) = ˆ̃Q+(ϵ+)

ˆ̃Q−(ϵ−)

∴
←−
P exp

∫ 1

0
dτ̃(Y+Ô+ + Y−Ô−) = exp

(
ϵ+Ô+ + ϵ−Ô−

)
Since there’s no path dependency:

Y± = ϵ±
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By using the cost functions F1 or F2:

F1(τ) =
∑

I

|YI(τ)|

F2(τ) =

√∑
I

Y2
I (τ)

We obtain:

C1 =
1
2

∣∣∣∣ln( ω̃+

µ

)∣∣∣∣+ 1
2

∣∣∣∣ln( ω̃−
µ

)∣∣∣∣
C2 =

1
2

√
ln2
(
ω̃+

µ

)
+ ln2

(
ω̃−
µ

)
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Complexity of the Vacuum in Free Scalar QFT

To study the complexity of the vacuum in free scalar QFT, let’s
consider a system of N one dimensional coupled harmonic oscillators
in a lattice with periodic boundary conditions.
This is a way of regularizing divergences:

Ĥ =
∞∑

n1,n2,n3
=−∞

1
2

[
1
M

p̂2(⃗n) + Mm2x̂2(⃗n) + MΩ2
3∑

i=1

(x̂(⃗n + e⃗iδ)− x̂(⃗n))2

]

↓

Ĥ =
N−1∑
n=0

1
2

[
p̂2

n + ω2x̂2
n +Ω2(x̂n+1 − x̂n)

2 ] ; M = 1
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To find the normal modes, we employ a discrete Fourier transform:

ˆ̃xk ≡
1√
N

N−1∑
n=0

exp

(
−2πikn

N

)
x̂n

ˆ̃pk ≡
1√
N

N−1∑
n=0

exp

(
2πikn

N

)
p̂n

We obtain a Hamiltonian for N decoupled oscillators:

Ĥ =
N−1∑
k=0

1
2

[
ˆ̃pk
ˆ̃p†k + ω̃2

k
ˆ̃xk
ˆ̃x†k

]

ω̃2
k ≡ ω2 + 4Ω2 sin2

(
πk
N

)
The excitations of these oscillators are the so-called particles.
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The vacuum is our target:

ϕt(x̃0, x̃1, . . . ) =
N−1∏
k=0

(
ω̃k√
π

)1/4

exp

[
−1

2
ω̃k |̃xk|2

]
And we pick the reference as:

ϕr(x0, x1, . . . ) =
N−1∏
n=0

(
µ√
π

)1/4

exp

[
−1

2
µx2

n

]

ϕr(x̃0, x̃1, . . . ) =
N−1∏
k=0

(
µ√
π

)1/4

exp

[
−1

2
µ|̃xk|2

]
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Like in the case with two oscillators, the only operator we need to go
from reference to target is:

ˆ̃Qk(ϵ) ≡ exp iϵ(ˆ̃xk
ˆ̃pk + ˆ̃pk

ˆ̃xk) −→ Scale ⟨ˆ̃xk⟩ by exp(2ϵ)

|ϕr⟩
∏N−1

k=0
ˆ̃Qk(ϵk)−−−−−−−→ |ϕt⟩

ϵk =
1
2
ln

(
ω̃k

µ

)
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At last, we obtain the complexity by employing the definitions:

Û(1) =
←−
P exp

∫ 1

0
dτ̃ Ĥ(τ̃) =

N−1∏
k=0

ˆ̃Qk(ϵk)

∴
←−
P exp

∫ 1

0
dτ̃

(
N−1∑
k=0

YkÔk

)
= exp

(
N−1∑
k=0

ϵkÔk

)

∴ Yk = ϵk

∴ C1 =
1
2

N−1∑
k=0

∣∣∣∣ln ω̃k

µ

∣∣∣∣ ; C2 =
1
2

√√√√N−1∑
k=0

ln2
(
ω̃k

µ

)

Let’s analyze C1.
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We can rewrite C1 as:

C1 =
1
4

N−1∑
k=0

∣∣∣∣∣ln ω̃2
k

µ2

∣∣∣∣∣
We must remember that the normal mode frequencies were defined
as:

ω̃2
k ≡ ω2 + 4Ω2 sin2

(
πk
N

)
Where ω ≡ m and Ω ≡ δ−1.
Also, we can write the number of oscillators as:

N =
L
δ

Where L is the length of our lattice.
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Therefore, we obtain:

C1 =
1
4

N−1∑
k=0

∣∣∣∣∣∣ln
m2

µ2 +
4 sin2

(
πkδ

L

)
δ2µ2

∣∣∣∣∣∣
To recover QFT, two limits must be taken:

L→∞ (or N→∞) ; δ → 0

Each of them causes C1 to diverge.
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We know that, in the QFT limit, the normal mode frequencies respect
the following:

ω̃2
k = m2 + p2

k

The momentum originates from the second term inside the ln. Let’s
identify this term as p2

k :

1
4

N−1∑
k=0

∣∣∣∣∣∣ln
m2

µ2 +
4 sin2

(
πk
N

)
δ2µ2

∣∣∣∣∣∣ = 1
4

N−1∑
k=0

∣∣∣∣∣ln
(

m2

µ2 +
p2

k

µ2

)∣∣∣∣∣
When we take the limits and sum over all k, we also end up with
k→∞. This is the so-called UV divergence:

lim
δ→0

N→∞
k→∞

p2
k =∞
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Then, it’s possible to argue that, in order to obtain the leading
contribution to C1, we only need to consider the UV contribution:

lim
δ→0

N→∞

C1 = lim
δ→0

N→∞

1
4

N−1∑
k=0

∣∣∣∣∣ln
(

m2

µ2 +
p2

k

µ2

)∣∣∣∣∣ ∼ lim
δ→0

N→∞

1
4

N−1∑
k>IR

∣∣∣∣∣ln p2
k

µ2

∣∣∣∣∣
But we can find an even simpler expression:

ln

[
p2

k

µ2

]
= ln

4 sin2
(
πk
N

)
δ2µ2

 = 2 ln

[
2
µδ

]
+ ln

[
sin2

(
πk
N

)]

In the UV, 2 ln
[

2
µδ

]
dominates.
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We have, finally:

C1 ∼ lim
δ→0

N→∞

1
2

N−1∑
k=0

ln
(

2
µδ

)
= lim

δ→0
N→∞

N
2

ln
(

2
µδ

)

∴ C1 ∼
1
2

(
L
δ

)
ln
(

2
µδ

)

The leading contribution to C1.

A similar analysis gives the leading contribution to C2:

C2 ∼
1
2

√
L
δ

ln
(

2
µδ

)
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Applications of Quantum Complexity

▶ Quantum computing
▶ Quantum chaos
▶ Topological phase transitions
▶ Holography and quantum gravity
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Holography, Quantum Gravity and Complexity

▶ AdS/CFT

Mathematical equivalence between a 4 dimensional CFT (boundary)
and a gravitational theory in 5 dimensional AdS space (bulk).

A special case of the holographic principle.
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▶ 2001 - Eternal Black Holes in Anti-de Sitter
Description of ER bridges as entangled CFTs.

▶ 2006 - Holographic Derivation of Entanglement Entropy from
AdS/CFT
Relation between entanglement and spacetime geometry.

▶ 2010 - Building up Spacetime with Quantum Entanglement
Relation between spacetime connectivity and entanglement.

▶ 2013 - Cool Horizons for Entangled Black Holes
(ER = EPR) Description of ER bridges as a manifestation of EPR
correlations.

▶ 2014 - Entanglement is not Enough
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▶ 2014 - Entanglement is not Enough

“Entanglement is not enough to understand the rich geometric
structures that exist behind the horizon and which are predicted by
general relativity. Entanglement entropy only grows for a very short
time, but the growth of Einstein-Rosen bridges is expected to last for
a very long time. Encoding that growth in the quantum state requires
quantum complexity."

Leonard Susskind
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Conjectures relating complexity and the geometry of spacetime allow
us to obtain the so-called “holographic complexity".

The leading contributions to holographic complexity obtained from
CV and CA conjectures:

CV ∼
L
δ

; CA ∼
(

L
δ

)
ln

(
LAdS

αδ

)
For the vacuum of free scalar QFT, we have found:

C1 ∼
1
2

(
L
δ

)
ln
(

2
µδ

)
; C2 ∼

1
2

√
L
δ

ln
(

2
µδ

)
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Just a few days ago!
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“Where there is quantum mechanics, there is also gravity."

Leonard Susskind
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